Development of a Gamma Ray Telescope for Online Synovial Dosimetry In Boron Neutron Capture Synovectomy
نویسندگان
چکیده
Boron Neutron Capture Synovectomy (BNCS) is a novel application of the B(n,α) reaction for potential treatment of rheumatoid arthritis. During BNCS clinical trials, real-time knowledge of boron dose delivered to the synovium is necessary so that the remaining irradiation time can be determined. A 478 keV photon is emitted following 94% of boron neutron capture reactions, and detection of 478 keV photons emitted from the synovium provides a potential approach for online monitoring of the accumulated synovial boron dose. This thesis explores the feasibility of developing a telescope system for online determination of synovial boron dose for accelerator-based BNCS. The Monte Carlo code MCNP was used to design the telescope system. The neutron and photon background distributions in the radiation vault at the Laboratory for Accelerator Beam Applications (LABA) at MIT were explored via Monte Carlo simulations, and an optimum position for the photon detector was determined. Collimator and detector shields were designed, and significant reduction of neutron flux and background count at the detector location was observed. Sufficient boron photon counts from the synovium were predicted, and the feasibility of using a NaI detector instead of an HPGe detector was also confirmed. Next, a telescope system was built in the radiation vault at LABA. A background peak overlapping the energy region of 478 keV photons was observed in the measured spectrum by a 10.2 cm × 10.2 cm NaI(Tl) detector. Origin and direction of background particles entering the detector were explored, and further background reduction was achieved. The composition of the background peak was also analyzed. Experimental characterization of the telescope system was performed. It was confirmed that boron photons from the synovium could be detected in the presence of background counts. The count saturation became significant when the boron concentration was over 10,000 ppm, as predicted by simulations. Experimental results were compared with simulation results, and the overall agreement was within 10–20%. Reconstruction approaches for determination of the synovial boron dose based on the measured boron photon count and additional information such as anatomic configuration of the joint and boron compound distribution were generated. Thesis Supervisor: Jacquelyn C. Yanch Title: Professor of Nuclear Engineering and Whitaker College of Health Sciences and Technology
منابع مشابه
An investigation into the potential applicability of gel dosimeters for dosimetry in boron neutron capture therapy
Background: The aim of this work was to establish how well gel dosimeters performed, as substitutes for brain tissue compared with standard phantom materials such as water, polymethyl-methacrylate (or PMMA), A150 plastic and TE- liquid phantom material for dosimetry of neutron beams in boron neutron capture therapy. Materials and Methods: Thermal neutron fluence, photon dose and epithermal neu...
متن کاملA Monte Carlo study of SPECT in boron neutron capture therapy for a heterogeneous human phantom
Background: Boron neutron capture therapy (BNCT) is a binary radiotherapy combining biochemical targeting with neutron irradiation. However, monitoring the boron distribution is a fundamental problem in BNCT. Prompt gamma rays emitted by boron capture reaction can be used to address the issue. Materials and Methods: The general-purpose Monte Carlo toolkits Geant4 and MCNP were used for the simu...
متن کاملInvestigation of neutron flux by thermoluminescence dosimeters in the neutron-gamma mixed field
Introduction: Neutrons have many applications in various fields, such as medicine. The important application of neutron in medical science is in Boron Neutron Capture Therapy (BNCT). Because of this, determination of neutron dose and flux is critical for the health maintaining of workers and patients exposed to this beam. The neutron radioisotope sources produce gamma rays in ...
متن کاملDosimetry Impact of Boron and Its Carriers Structure at Boron Neutron Capture Therapy of a Brain Tumor; A Sim- ulation Study
Introduction: Boron neutron capture therapy (BNCT) is a method of cancer treatment and potentially, two borono-L-phenylalanine (BPA) and sodium borocaptate (BSH) are used in BNCT as common boron carriers. Some previous studies have shown that the dose rate is directly related to boron concentration in the tissue. This study aimed to simulate the structure of boron carriers and brain tumor compo...
متن کاملDosimetry Impact of Boron and Its Carriers Structure at Boron Neutron Capture Therapy of a Brain Tumor; A Sim- ulation Study
Introduction: Boron neutron capture therapy (BNCT) is a method of cancer treatment and potentially, two borono-L-phenylalanine (BPA) and sodium borocaptate (BSH) are used in BNCT as common boron carriers. Some previous studies have shown that the dose rate is directly related to boron concentration in the tissue. This study aimed to simulate the structure of boron carriers and brain tumor compo...
متن کامل